'build'
This commit is contained in:
7
.gitignore
vendored
Normal file
7
.gitignore
vendored
Normal file
@@ -0,0 +1,7 @@
|
||||
app.egg-info
|
||||
*.pyc
|
||||
.mypy_cache
|
||||
.coverage
|
||||
htmlcov
|
||||
.cache
|
||||
.venv
|
||||
14
docker-compose.yml
Normal file
14
docker-compose.yml
Normal file
@@ -0,0 +1,14 @@
|
||||
services:
|
||||
bentoml-serve:
|
||||
build: ./
|
||||
container_name: bentoml_serve
|
||||
ports:
|
||||
- "3000:3000"
|
||||
networks:
|
||||
- traefik-public
|
||||
- default
|
||||
|
||||
networks:
|
||||
traefik-public:
|
||||
# Allow setting it to false for testing
|
||||
external: false
|
||||
9
dockerfile
Normal file
9
dockerfile
Normal file
@@ -0,0 +1,9 @@
|
||||
FROM python:3.10
|
||||
|
||||
WORKDIR /app/
|
||||
|
||||
COPY ./src /app/
|
||||
|
||||
RUN pip install --no-cache-dir scikit-learn bentoml -i https://mirrors.aliyun.com/pypi/simple/
|
||||
|
||||
CMD ["bentoml", "serve"]
|
||||
BIN
src/models/logistic_model_0810.pkl
Normal file
BIN
src/models/logistic_model_0810.pkl
Normal file
Binary file not shown.
BIN
src/models/vectorizer_0810.pkl
Normal file
BIN
src/models/vectorizer_0810.pkl
Normal file
Binary file not shown.
33
src/service.py
Normal file
33
src/service.py
Normal file
@@ -0,0 +1,33 @@
|
||||
import bentoml
|
||||
import joblib
|
||||
|
||||
my_image = bentoml.images.Image(python_version="3.10") \
|
||||
.python_packages("scikit-learn", "numpy")
|
||||
|
||||
@bentoml.service(
|
||||
image=my_image
|
||||
)
|
||||
|
||||
class NewsClassifierService:
|
||||
model_logistic_path = "./models/logistic_model_0810.pkl"
|
||||
model_vectorizer_path = "./models/vectorizer_0810.pkl"
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.model_logistic = joblib.load(self.model_logistic_path)
|
||||
self.model_vectorizer = joblib.load(self.model_vectorizer_path)
|
||||
|
||||
@bentoml.api
|
||||
def classify(self,text: str) -> dict:
|
||||
categories = ['Competition News','financial news','Medical news','sports news']
|
||||
token_text =self.model_vectorizer.transform([text])
|
||||
prediction = self.model_logistic.predict(token_text)
|
||||
print(f"Prediction: {prediction}")
|
||||
predict = categories[prediction[0]]
|
||||
|
||||
json_response = {
|
||||
"text": text,
|
||||
"predict": predict
|
||||
}
|
||||
|
||||
return json_response
|
||||
|
||||
Reference in New Issue
Block a user